2,245 research outputs found

    Velocity statistics from spectral line data: effects of density-velocity correlations, magnetic field, and shear

    Full text link
    In a previous work Lazarian and Pogosyan suggested a technique to extract velocity and density statistics, of interstellar turbulence, by means of analysing statistics of spectral line data cubes. In this paper we test that technique, by studying the effect of correlation between velocity and density fields, providing a systematic analysis of the uncertainties arising from the numerics, and exploring the effect of a linear shear. We make use of both compressible MHD simulations and synthetic data to emulate spectroscopic observations and test the technique. With the same synthetic spectroscopic data, we also studied anisotropies of the two point statistics and related those anisotropies with the magnetic field direction. This presents a new technique for magnetic field studies. The results show that the velocity and density spectral indices measured are consistent with the analytical predictions. We identified the dominant source of error with the limited number of data points along a given line of sight. We decrease this type of noise by increasing the number of points and by introducing Gaussian smoothing. We argue that in real observations the number of emitting elements is essentially infinite and that source of noise vanishes.Comment: 12 pages, 10 figures. Accepted for publication in MNRA

    Reduction of the Casimir force using aerogels

    Full text link
    By using silicon oxide based aerogels we show numerically that the Casimir force can be reduced several orders of magnitude, making its effect negligible in nanodevices. This decrease in the Casimir force is also present even when the aerogels are deposited on metallic substrates. To calculate the Casimir force we model the dielectric function of silicon oxide aerogels using an effective medium dielectric function such as the Clausius-Mossotti approximation. The results show that both the porosity of the aerogel and its thickness can be use as control parameters to reduce the magnitude of the Casimir force.Comment: to appear J. Appl. Phy

    Pull-in control due to Casimir forces using external magnetic fields

    Full text link
    We present a theoretical calculation of the pull-in control in capacitive micro switches actuated by Casimir forces, using external magnetic fields. The external magnetic fields induces an optical anisotropy due to the excitation of magneto plasmons, that reduces the Casimir force. The calculations are performed in the Voigt configuration, and the results show that as the magnetic field increases the system becomes more stable. The detachment length for a cantilever is also calculated for a cantilever, showing that it increases with increasing magnetic field. At the pull-in separation, the stiffness of the system decreases with increasing magnetic field.Comment: accepted for publication in App. Phys. Let
    corecore